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Abstract. Substantial effort has been focused over the last two decades on developing multi-
level iterative methods capable of solving the large linear systems encountered in engineering practice.
These systems often arise from discretizing partial differential equations over unstructured meshes,
and the particular parameters or geometry of the physical problem being discretized may be unavail-
able to the solver. Algebraic multigrid and multilevel domain decomposition methods of algebraic
type have been of particular interest in this context because of their promises of optimal perfor-
mance without the need for explicit knowledge of the problem geometry. These methods construct
a hierarchy of coarse problems based on the linear system itself and on certain assumptions about
the smooth components of the error. For smoothed aggregation methods applied to discretizations
of elliptic problems, these assumptions typically consist of knowledge of the near-nullspace of the
weak form. This paper introduces an extension of the smoothed aggregation method in which good
convergence properties are achieved in situations where explicit knowledge of the near-nullspace
components is unavailable. This extension is accomplished by using the method itself to determine
near-nullspace components and adjusting the coarsening processes accordingly.
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1. Introduction. Over the last decade, smoothed aggregation (SA; cf. [20, 22,
21, 19, 8]) has emerged as an efficient multilevel algebraic solver for the solution of the
algebraic systems obtained by discretizing certain classes of differential equations on
unstructured meshes. In particular, SA is often very efficient at solving the systems
that arise from problems of 3D thin-body elasticity, a task that can tax traditional
algebraic multigrid techniques.

As with classical AMG [3, 17, 18], the standard smoothed aggregation method
bases its transfer operators on certain assumptions about the nature of smooth er-
ror. For SA applied to discretizations of elliptic partial differential equations, this
assumption usually takes the form of explicit knowledge of the near-nullspace of the
associated weak form. This knowledge is easy to obtain for large classes of problems.
For example, it is simple to determine the near-nullspace for finite element discretiza-
tions of second- or fourth-order PDEs, including many nonscalar problems. In more
general situations, however, this knowledge may not be readily available. Consider
the case where the matrix for a problem is provided without knowledge of how the
original problem was discretized or scaled. Seemingly innocuous discretization prac-
tices, such as the use of scaled bases, can hamper algebraic multigrid solvers if this
scaling is not taken into account. Even the simplest problems discretized on regular
grids using standard finite elements can pose serious difficulties if the resulting ma-
trix has been scaled without this information being provided to the solver. Other
discretization practices leading to problematic linear systems include the use of exotic
bases and systems problems in which different local coordinate systems are used for
different parts of the model.
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To successfully solve such problems when only the matrix is provided, we need
a process by which the algebraic multilevel solver can determine how to effectively
coarsen the linear system using only information from the system itself. The method
we propose here, which we call adaptive Smoothed Aggregation (αSA), is an attempt
to do just that. αSA is based on the simple principle that applying a linear iterative
method to the homogenous problem (Ax = 0) reveals error components that the
method does not effectively reduce. While this principle is easily stated in loose
terms, the resulting algorithm and its implementation can be very subtle. We hope
to expose these subtleties in the presentation that follows.

The objective of the setup phase of αSA is therefore to compute a set of vectors, B,
that represent error components that relaxation is slow to resolve. Such components
are usually referred to by the terms algebraically smooth, near-nullspace, near-kernel,
or, in the case of linear elasticity, rigid body modes. We simply call them candidates
here as it is not actually essential that all of the vectors we compute be troublesome
components: we use a measure that, in effect, ignores candidates that relaxation
efficiently handles. It is also not a problem if we compute redundant or linearly
dependent candidates because our approach is designed to select the information we
need from the candidate subspace. It is, however, important to be certain that the final
set of candidates is rich in the sense that they combine to represent all troublesome
components locally. The keys in being able to do this are to evolve the multigrid
solver by having it compute its own slow-to-converge error components (by way of
the homogeneous problem) and to use these new components to properly improve the
solver.

The setup phase for αSA is easiest to describe as an adaptive process. We start
from a given primitive parent method (possibly a simple relaxation scheme) with error
propagation operatorM0, and a current but possibly empty set, B, of candidates (error
components that M0 does not effectively reduce). We attempt to enhance B by first
putting M0 to the test: given a small number, n, of iterations and a random initial
guess, e0, compute

en ←Mn
0 e0.(1.1)

If the method performs well in the sense that en is much smaller than that of e0
in an appropriate norm, then it is accepted as the solver and the adaptive scheme
stops. Otherwise, the resulting approximation, en, is expected to be rich in the error
components that are not effectively reduced byM0, so it is added to the candidate set,
B. The new candidates set is then used to construct an improved child method, with
error propagation operator M1. The whole process can then be repeated with M1

in place of M0, continuing in this way to generate a sequence of hopefully improving
methods, Mk.

Thus, we iterate on the method itself, improving the current version by having it
compute its own troublesome components–those that it does not effectively reduce–
and then adjusting the coarsening process accordingly to produce a new method. Old
candidate components are also used in this adjustment process to ensure that the new
method continues to reduce them efficiently. This improvement process repeats until
the current method shows itself to be capable of efficient solution of the problem of
interest. The iteration on the method is called the adaptive setup phase (or, simply,
the setup phase) to distinguish it from the solver phase where the resulting method is
applied to the target problem. The setup phase is terminated when either the latest
incarnation of the method performs satisfactorily or when a prescribed number of
steps is reached.
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Each new child method is constructed based on components resulting from parent
iteration (1.1). The method is modified to reflect the newly computed candidates
as soon as they become available. In other words, the method is kept up to date at
all times and no more work is done than necessary. In section 3.2, we show how the
general setup phase naturally takes the form of a reverse FMG-cycle.

The adaptive strategy outlined above is designed to uncover global error compo-
nents that a parent method does not handle well. It is crucial to recognize that there
are likely to be many such components, so many that, in general, we cannot expect
to identify each one individually. Typically, a small but fixed percentage of the spec-
trum of Mk corresponds to troublesome components. Thus, the few candidates that
iteration (1.1) identifies must serve as representatives for many smooth components
in the coarsening process. This is analogous to the standard SA coarsening processes
where the near-kernel is used to represent all smooth components. This representation
is accomplished by first taking local segments of each candidate (i.e., by taking the
restriction of the candidate to an aggregate and extending it outside the aggregate
with zeros) so that the segments sum to the candidate itself. Each segment is then
smoothed to enhance the overall approximation property in the sense that it accu-
rately represents similar smooth components. In this way, standard SA constructs a
rich set of local representations of the smooth or troublesome components. So too
must αSA. Indeed, we need a way to coarsen the system that ensures accurate approx-
imation of the error components that the current candidates represent. Of course, to
control storage and CPU costs, we also need to control operator complexity, which
involves: limiting the number of candidates that iteration (1.1) produces; exploiting
these candidates as fully as we can; and limiting the growth of the number of coarse
degrees of freedom.

The smoothed aggregation framework [19] lends itself to this task. It offers fast
automatic coarsening with well-understood control over operator complexity due to its
typically fixed coarse-operator sparsity pattern. In addition, the process guarantees
proper approximation of a given set of functions and their natural localizations dur-
ing the coarsening process. The resulting coarse-level basis functions are smooth by
design and thus suitable for use in a multilevel method. The candidates obtained by
iteration (1.1) play the roles of the near-kernel components on which the SA method
is based. Thus, in the αSA context, the notion of near-kernel components depends
not only on the problem, but also on the current method. In general, however, a trou-
blesome component must have a small Rayleigh quotient, signifying ineffectiveness of
relaxation. However, in all but the initial phase (where coarsening has perhaps not
yet been constructed) or the final phase (where the method may be efficient), the
current candidate must also have a small Rayleigh quotient defined in terms of the
current coarse-level projection operator. We do not use this property explicitly in the
adaptive process, but keeping it in mind can aid in understanding the development
that follows.

Thus, our main goal is to extend applicability of the smoothed aggregation concept
to difficult problems for which the original method may perform poorly, possibly due
to the lack of explicit knowledge of the near-kernel. The algorithm may also be useful
for improving performance in applications that involve multiple right sides, where
efforts to improve the method may be amortized over the number of solutions.

In what follows, we develop this modification of the smoothed aggregation method
in such a way that good convergence properties are recovered even if explicit knowledge
of the near-kernel is either incomplete or lacking altogether. This should facilitate
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solution in cases where the problem geometry, discretization method, or coefficients
of the differential operator are not explicitly known to the solver. At the same time,
we strive to keep storage requirements low.

The concept of using a multigrid algorithm to improve itself is not new. Using
representative smooth vectors in the coarsening process was first introduced in [14],
where interpolation was defined to fit vectors obtained by relaxation of the homoge-
neous problem. In [3], a variation of this idea was used for recovering typical AMG
convergence rates for a badly-scaled scalar elliptic problem. While the method there
was very basic and used only one candidate, it contained many of the ingredients of the
approach developed below. These concepts were developed further in [15, 16, 18, 13].
The idea of fitting eigenvectors corresponding to the smallest eigenvalues was ad-
vocated in [13] and [18], where an AMG algorithm determining these eigenvectors
through Rayleigh quotient minimization was outlined. These vectors were, in turn,
used to update the AMG interpolation and coarse-grid operators. Most of these ideas
were later summarized in [13]. A more sophisticated adaptive framework appropriate
for the standard AMG is currently under investigation [6].

Another method of the type developed here is the Bootstrap AMG scheme pro-
posed recently by Brandt [2, 4]. It differs somewhat from ours in that it starts on the
fine grid by iterating on a number of different random initial guesses, with interpo-
lation then constructed to approximately fit the resulting vectors in a least-squares
sense.

Various other attempts have been made to allow for the solver itself to determine
from the discrete problem the information required to successfully solve it, without
a priori assumptions on the form of the smooth error. These include the methods
of [12, 7, 5, 10, 11]. All these methods, however, need access to the local finite
element matrices of the problem so that they can construct the multigrid transfer op-
erators based on the algebraically smooth eigenvectors of the agglomerated stiffness
matrices. Although these methods exhibit attractive convergence properties, their
need to construct, store, and manipulate the coarse-level element information typi-
cally leads to increased storage requirements compared to those of classical AMG or
standard SA. The current method aims to achieve the good convergence properties of
the element-based methods without the overhead of the element storage.

This paper is organized as follows. In Section 2, we briefly recall the standard
smoothed aggregation method and introduce some notation used throughout the re-
mainder of the paper. Readers who are unfamiliar with the fundamental concepts
assumed here may first wish to consult basic references on multigrid (e.g., [9]) and
smooth aggregation (e.g., [19]). Section 3 motivates and describes possible strategies
to extract the information used to construct improved transfer operators based on the
method’s iterative history. These strategies can be described as adaptive AMG, in
which the method ideally evolves until a cross-point at which further improvement (in
terms of convergence rate) is offset by the increased cost of each iteration. Section 4
discusses implementation issues and ways of reducing cost and improving accuracy of
the setup phase. Finally, Section 5 presents computational examples demonstrating
the performance of the smoothed aggregation method based on the adaptive setup
concepts.

2. Smoothed Aggregation. We first briefly recall the smoothed aggregation
method and introduce some of the notation used later (see [19] for more detail).
Assume that A is an SPD matrix of order n1 resulting from a discretization of an
elliptic second- or fourth-order partial differential equation in IRd, where d ∈ {1, 2, 3}.
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Our aim is to solve A1x = b1, obtained by scaling Ay = b by its diagonal part, D:

A1 = D−1/2AD−1/2, b1 = D−1/2b.(2.1)

A hierarchy of coarse problems is generated by the Galerkin recurrence:

Al+1 = (I ll+1)
TAlI

l
l+1,(2.2)

where the prolongator, I ll+1, is defined as the product of a given prolongation smoother,

Sl, and a tentative prolongator, P l
l+1:

I ll+1 = SlP
l
l+1,(2.3)

l = 1, . . . , L − 1. Suppose we are given a smoothing procedure for each level l ∈
{1, . . . , L} system, Alx = bl, of the form

x← (I −RlAl)x +Rlbl.(2.4)

Here, Rl is some simple approximate inverse of Al (e.g., Rl = slI, where sl ≈ 1
ρ(Al)

)

for l = 1, . . . , L− 1. Assume for simplicity that the coarsest level uses a direct solver:
RL = A−1

L . To make use of the existing convergence estimates, we assume that

λmin(I −RlAl) ≥ 0 and λmin(Rl) ≥
1

C2
Rρ(Al)

,

with a constant CR > 0 independent of the level.
The smoothed aggregation iteration can formally be viewed as a standard varia-

tional multigrid process with a special choice of transfer operators I ll+1. One iteration
of smoothed aggregation multigrid, x← AMG(x,b1), for solving A1x1 = b1 is given
by setting AMG = AMG1, where AMGl(·, ·), l = 1, . . . , L − 1, is defined as fol-
lows:

Algorithm 1 (AMGl).
1. Pre-smoothing: Apply ν pre-smoothings to Alxl = bl of the form

xl ← (I −RlAl)xl +Rlbl.
2. Coarse-grid correction:

(a) Set bl+1 = (I ll+1)
T (bl −Alxl).

(b) If l + 1 < L, set xl+1 = 0 and solve the coarse grid problem

Al+1xl+1 = bl+1,

by γ applications of xl+1 ← AMGl+1(xl+1,bl+1);
else, solve the coarse-level problem directly.

(c) Correct the solution on level l: xl ← xl + I ll+1xl+1.
4. Post-smoothing: Apply ν post-smoothings to Alxl = bl of the form

xl ← (I −RlAl)xl +Rlbl.

The components of the method that can be varied to achieve better convergence
are the construction of Sl and P l

l+1. A good choice for Sl is described in [19] and
scrutinized in more generality in [7]. For our purposes, it suffices to assume that
the prolongation smoother, Sl, is the error propagation operator corresponding to
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Richardson iteration for the problem on level l, with the particular choice of damping
suggested in [19]:

Sl = I − 4

3 λl
Al,(2.5)

where λl = 91−lλ̄ and λ̄ is a bound on the spectral radius of the fine-level matrix:
ρ(A1) ≤ λ̄. With the prolongation smoothers thus chosen, we can concentrate in this
paper on the construction of P l

l+1.
Note 2.1. Our selection of multigrid smoothing procedure (2.4) and prolonga-

tion smoothers Sl follows that of [19], where convergence estimates are obtained. We
turn to these results for heuristics in Section 3.

The construction of operators P l
l+1 consists of deriving the sparsity structure and

specifying the nonzero values. The nonzero sparsity structure determines the supports
of the tentative coarse-grid functions and is specified by way of a decomposition of
the set of degrees of freedom associated with operator Al into an aggregate partition:
⋃Nl+1

i=1 Al
i = {1, . . . , Nl}, Al

i ∩ Al
j = ∅, 1 ≤ i < j ≤ Nl+1, l = 1, . . . , L − 1, where

Nl denotes the number of nodes on level l. Note that the number of aggregates on
level l defines the number of nodes on the next level: Nl+1 = card({Al

i}). Let nl
denote the number of degrees of freedom on level l and assume at least one degree of
freedom is associated with each node, so that nl ≥ Nl. Aggregates Al

i can be formed
based only on the connectivity and strength of connection between the entries of Al,
cf. [22].

Although we illustrate these concepts on the example of a finite element dis-
cretization, where the notion of a node should be most familiar to the reader, for us
a node is a strictly algebraic entity consisting of a list of degrees of freedom. In fact,
the finite element analogy is only possible on the finest level; the degrees of freedom
on all other levels have no explicit geometry associated with them. Thus, throughout
this paper, a node on level l+1 > 1 is a set of degrees of freedom associated with the
coarse basis functions whose discrete supports contain the same aggregate on level l.
Thus, each aggregate, A, on level l gives rise to one node on level l + 1, and each
degree of freedom constituting that node is a coefficient of a particular basis function
in the coarse-level basis expansion associated with A.

The second ingredient in constructing generalized aggregation tentative prolonga-
tors P l

l+1 consists of endowing the sparsity structure derived from the nodal aggrega-
tion with appropriate values. Starting with a given matrix, B1, whose columns repre-
sent the near-kernel of the fine-level operator, we construct the tentative prolongators
and the coarse-level representation of the near-kernel components simultaneously to
satisfy

P l
l+1B

l+1 = Bl, (P l
l+1)

TP l
l+1 = I.(2.6)

This construction of P l
l+1 and B

l+1 is practical and parallelizable because it is achieved

by assigning each nodal aggregate a set of columns of P l
l+1 with a sparsity structure

that is disjoint from all other columns. Thus, obtaining (2.6) amounts to solving a
set of local independent orthonormalization problems in which the basis given by the
fine-level near-kernel matrix, Bl, restricted to the degrees of freedom of an aggregate,
is orthonormalized using the QR algorithm. The resulting orthonormal basis forms
the values of a block column of P l

l+1, while the coefficients representing the old basis

with respect to the new basis define Bl+1, cf. [22, 19].
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Note 2.2. In this way, with B1, A1, and b1 given, the entire multigrid setup
can be performed. This construction of the algebraic multigrid hierarchy, using (2.6),
(2.3), and (2.2), and relying on a given fine-level near-kernel representation, B1, is
called the standard smoothed aggregation setup in this paper. For later reference, we
outline the setup in Algorithm 2 below. For details, see [19].

Algorithm 2 (Standard smoothed aggregation setup).
Given A1, B

1, L, do the following for l = 1, . . . , L− 1:
(a) Construct {Al

i}Nl

i=1 based on Al.

(b) Construct Bl+1 and P l
l+1 using (2.6) based on {Al

i}Nl

i=1.

(c) Construct the smoothed prolongator: I ll+1 = SlP
l
l+1.

(d) Construct the coarse matrix: Al+1 = (I ll+1)
TAlI

l
l+1.

With our choice of smoothing components and a coarsening procedure utiliz-
ing (2.6), the standard smoothed aggregation scheme can be proven to converge un-
der certain assumptions on the near-kernel components alone. The following such
result motivates the need for standard smoothed aggregation to have access to the
near-kernel components and serves to motivate and guide our development of αSA.

Let 〈u,v〉A denote the Euclidean inner product over the degrees of freedom cor-
responding to an agglomerate A and denote the A1-norm by |||u||| = 〈A1u,u〉1/2.
Let B1 denote an n1 × r matrix whose columns are thought to form a basis for the
near-kernel components corresponding to A1.

Theorem 2.3 (Theorem 4.2 of [19]). With Ãl
i denoting the set of fine-level

degrees of freedom corresponding to aggregate Al
i on level l, assume that there exists

constant Ca > 0 such that, for every u ∈ IRn1 and every l = 1, . . . , L−1, the following
approximation property holds:

∑

i

min
w∈IRr

‖u−B1w‖2
Ãl

i

≤ Ca
9l−1

ρ(A1)
〈A1u,u〉.(2.7)

Then

|||x∗ −AMG(x,b1)||| ≤
(

1− 1

c(L)

)

|||x∗ − x||| ∀x ∈ IRn1 ,

where A1x
∗ = b1 and c(L) is a polynomial of degree 3 in L.

Since the use of (2.6) is assumed, condition (2.7) reflects an assumption on all
tentative prolongators P l

l+1 and can be equivalently restated as

∑

i

min
w∈IRr

‖u− P 1
2P

2
3 . . . P

l
l+1B

l+1w‖2
Ãl

i

≤ Ca
9l−1

ρ(A1)
〈A1u,u〉,(2.8)

for every u ∈ IRn1 and every l = 1, . . . , L − 1. Thus, in the context of smoothed
aggregation, condition (2.7) can be viewed as an alternative formulation of the weak
approximation property [1]. Note that the required approximation of a fine-level vec-
tor is less stringent for coarser levels. Also, convergence is guaranteed even though no
regularity assumptions have been made. Although the convergence bound naturally
depends on the number of levels, computational experiments suggest that the pres-
ence of elliptic regularity for standard test problems yields optimal performance (i.e.,
convergence with bounds that are independent of the number of levels).
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That polynomial c(L) in the convergence estimate has degree 3 is an artifact
of the proof technique used in [19], where no explicit assumptions are made on the
smoothness of the coarse-level bases; instead, only the smoothness guaranteed by
application of the simple prolongation smoother, Sl, is considered.

Notice that this convergence result hinges on the selection of B1. In particular,
B1, and the coarse operators, Bl+1 and P l

l+1, 1 ≤ l ≤ L − 1, that it induces, must
guarantee that the left side of (2.8) is small for any vector u for which 〈A1u,u〉 is
small. Since the standard SA method requires that matrix B1 be given as input,
with the columns of B1 representing a basis of (a superset of) the near-kernel of A1,
then the construction of P l

l+1 in (2.6) guarantees that all coarse-level representations,

Bl, form a basis for (a superset of) the near-kernel of Al, l > 1. The purpose of
this paper is to enrich a given, incomplete (possibly even empty) set of near-kernel
components with approximations computed at runtime in such a way that good con-
vergence can be recovered. The adaptive method can then be viewed as an iterative
attempt to satisfy (2.8) heuristically (see Note 3.2 below). Our B1 is computed only
approximately, which means that the coarse-level Bl obtained by (2.6) alone may not
be the optimal representation of the near-kernel. To remedy this, we carry out the
setup computation also on the coarse levels to improve on the initial guess for the
coarse-level candidates given by (2.6).

The following section describes our basic approach to achieving this objective.

3. Self-Correcting Adaptive Setup. In this section, we describe a prototype
of the adaptive method. To maintain generality and simplicity, the discussion is
intentionally vague about the various processes involved in the algorithm. Details are
provided in Section 4. Suffice it to say here that the coarsening processes are closely
related to those used in standard SA.

Before describing the algorithm, we introduce the following notational conven-
tions. The transfer operators and coarse-level problems, as well as other components
of our multigrid scheme, change as our method evolves. Whenever possible, we use
the same symbols for the updated components. Thus, symbol B l may denote a single
vector in one cycle of the setup procedure, or perhaps a two-column matrix in the
next step of the setup. The intended meaning should be clear from context.

3.1. Initialization setup stage. The adaptive multigrid setup procedure con-
sidered in this paper can be split into two stages. If no knowledge of the near-kernel
components of A1 is available, then we start with the first stage to determine an
approximation to one such component. This stage also determines the number of
levels, L, to be used in the coarsening process. (Changing L in the next stage based
on observed performance is certainly possible, but it is convenient to fix L–and other
constructs–early in the setup phase.)

Let ε > 0 be a given convergence tolerance.
Algorithm 3 (Initialization stage).

1. Set l = 1, select a random vector, x1 ∈ IRn1 , and create copy, x̂1 ← x1.
2. With initial approximation x1, relax µ times on A1x = 0:

x1 ← (I −R1A1)
µx1.

3. If
(

〈A1x1,x1〉
〈A1x̂1,x̂1〉

)1/µ

≤ ε, then set L = 1 and stop (problem A1x = b1 can be solved

fast enough by relaxation alone, so only one level is needed).
4. Otherwise, do the following:
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(a) Set Bl ← xl.
(b) Create a set, {Al

i}Nl

i=1, of nodal aggregates based on matrix Al.
(c) Define tentative prolongator P l

l+1 and candidate matrix Bl+1 using the

candidate matrix Bl and relations (2.6) with structure based on {Al
i}Nl

i=1.
(d) Define the prolongator: I ll+1 = SlP

l
l+1.

(e) Define the coarse matrix: Al+1 = (I ll+1)
TAlI

l
l+1. If level l + 1 is coarse

enough that a direct solver can be used there, skip to Step 5; otherwise,
continue.

(f) Set the next-level approximation vector: xl+1 ← Bl+1.
(g) Make a copy of the current approximation: x̂l+1 ← xl+1.
(h) With initial approximation xl+1, relax µ times on Al+1x = 0:

xl+1 ← (I −Rl+1Al+1)
µxl+1.

(i) If
(

〈Al+1xl+1,xl+1〉
〈Al+1x̂l+1,x̂l+1〉

)1/µ

≤ ε, skip Steps (f-i) in further passes through Step

4.
(j) Increment l← l + 1 and return to Step 4(a).

5. Set L← l + 1 and update the finest-level candidate matrix:

B1 ← I1
2I

2
3 . . . I

L−2
L−1xL−1.

6. Create the V -cycle based on B1 using the standard smoothed aggregation setup of
Algorithm 2, with the exception that the aggregates are predetermined in Step
4.

This initialization stage terminates whenever a level is reached in the coarsening
process where a direct solver is appropriate. It does not involve level L processing
because it is assumed that the coarsest level is handled by a direct solver, making the
stopping criterion in Step 4(i) automatically true. Notice that the candidate matrix
is actually a vector in this initial stage because we are computing only one candidate.
Note that this stage provides all of the components needed to construct our initial
solver, AMG1.

If the criterion tested in Step 4(i) is satisfied, we are assured that the current
coarse level, l + 1 can be easily solved by relaxation alone. At that point, we could
choose not to coarsen further and use relaxation as a coarsest-level solver. However,
it is possible that the general stage of the algorithm described below adds more can-
didates. In case a new candidate approximates the low-energy modes of the problem
better than the candidate obtained in the initial step, the coarse-level matrix may
no longer be easily solved by relaxation alone. Thus, we choose to coarsen further,
until we are sure that the coarsest problem can be handled well. This offers an added
benefit of producing, at the end of the initial stage, a complete aggregation that can
be reused in the general stage. Note that if 4(i) is satisfied, then the approximate
solution of the homogenous problem may be zero. In such a case, we restore the saved
original vector x̂l+1. We choose to skip the Steps 4(f-i) in further coarsening once
4(i) is satisfied. This amounts to using standard SA coarsening from level l+1 down,
which guarantees that the candidate computed on level l is exactly represented all the
way to the coarsest level. Figure 3.1 illustrates Algorithm 3.

Note 3.1. The initialization stage described in Algorithm 3 is used only if no
knowledge of the near-kernel components is provided. In many situations, however,
some knowledge may be available and should be used. In such cases, the initialization
stage can be omitted and the initial B1 can be assumed to consist of the given set
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Fig. 3.1. Initialization stage, Algorithm 3
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of vectors. The initial V -cycle would then be constructed exactly as in Algorithm 2
prior to running the main adaptive setup.

As an example, consider a problem of 3D linear elasticity discretized by a stan-
dard linear first-order finite element method over an unstructured grid. In this case,
if the discretization package either generates the rigid body modes or supplies the
nodal geometry to the solver, then the full set of nullspace vectors are presumably
available [21] and the adaptive process may be unnecessary. Otherwise, when the full
set of rigid body modes is unavailable, it is nevertheless often possible to obtain a sub-
set of the rigid body modes consisting of three independent constant displacements,
regardless of the geometry of the grid. Such a subspace should be used whenever
possible to create B1 and to set up a V -cycle exactly as in the standard smoothed
aggregation method. The initialization stage would then be omitted.

Thus, the initialization stage given by Algorithm 3 should be viewed as optional,
to be done only if no information can be assumed about the system to be solved.
In view of Note 3.1, we can in any case assume that the initial B1 has at least
one column and that a tentative V -cycle is available. This means that we have
constructed aggregates Al

i, transfer operators P l
l+1 and I ll+1, and coarse operators

Al+1, l = 1, . . . , L− 1.

3.2. General setup stage. In each step of the second stage of the adaptive
procedure, we apply the current V -cycle to the homogenous problem to uncover error
components that are not quickly attenuated. The procedure then updates its own
transfer operators to ensure that these components will be eliminated by the improved
method, while preserving the previously established approximation properties. Thus,
this stage essentially follows the initialization stage with relaxation replaced by the
current V -cycle.

One of the subtleties of this approach lies in the method’s attempt to update each
level of the evolving V -cycle as soon as its ineffectiveness is exposed. Thus, on the
finest level in the second stage, the current V -cycle simply plays the role of relaxation:
if it is unable to quickly solve the homogeneous problem (i.e., Step 3 fails), then the
resulting error becomes a new candidate and new degrees of freedom are generated
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accordingly on level 2 (i.e., columns are added to B1). The level 2-to-L part of the
old V -cycle (i.e., the part without the finest level) then plays the role of the level 2
relaxation in the initial setup phase and is thus applied to the homogeneous problem
to assess the need to improve its coarser-level interpolation operators. The same is
done on each coarser level, l, with the level l-to-L part of the old V -cycle playing the
role of the level l relaxation step in the initial setup phase. The process continues
until adequate performance is observed or the maximum permitted number of degrees
of freedom per node is reached on coarse levels.

We present a general prototype algorithm for the adaptive multigrid setup, as-
suming that a tentative V -cycle has previously been constructed (cf. Note 3.1). We
thus assume that a current hierarchy of nodal aggregates, {Al

i}Nl

i=1, and operators
P l
l+1, I

l
l+1, Al+1, are available for all l = 1, . . . , L− 1.

Consider a method in which, within each cycle of the adaptive setup, we attempt
to update the current V -cycle level by level. One cycle of this adaptive setup traverses
from the finest to the coarsest level; on each level l along the way, it updates B l based
on computing a new candidate from the current multigrid scheme applied to the
homogenous problem on level l. Thus, on level l in the setup process, a solver is
applied that traverses from that level to level L and back. This gives us the picture of
a backward FMG cycle, where the setup traverses from the finest to the coarsest grid
and each level along the way is processed by a V -cycle solver (see Figure 3.2). Now,
once this new candidate is computed, it is incorporated into the current multigrid
scheme and the previously existing V -cycle components are overwritten on level l+1,
but temporarily retained from that level down. As a result, we redefine level-by-level
the V -cycle components. Once the new Bl (and I ll+1 in (2.3)) are constructed all the
way to the coarsest level, we can then use them to update the current B1 and, based
on it, construct a new V -cycle on the finest level.

Fig. 3.2. Self-correcting adaptive cycling scheme given by Algorithm 4, with the solver cycles
uncollapsed.

2

3

4

5

6

1

The general stage is therefore analogous to the initialization stage described in
Algorithm 3, with relaxation replaced by the evolving V -cycle. Instead of using simple
relaxation on each level as the initialization stage does, the general stage uses the
current solver to identify new types of error that the earlier sweeps of the setup cycle
may have missed. The initialization stage was designed to capture a type of error that
relaxation cannot efficiently eliminate. A prototype of this algebraically smooth error
is the candidate that is generated by applying relaxation to the homogeneous problem
on each level. Similarly, each cycle of the general stage is designed to capture a type of
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error that the current V -cycle cannot handle, and this too must be done on each level.
It is important to note that we are talking here about error type. It is not enough
for the coarsening process to eliminate only the particular candidate: typically, a
fixed percentage of the spectrum of A1 is algebraically smooth, so elimination of one
candidate at a time would take O(n1) setup cycles. Thus, to avoid this unacceptably
large cost, each setup cycle must determine interpolation operators so that the solver
eliminates a relatively large set of errors of each candidate’s type. Just as each rigid
body mode is used locally in standard SA to treat errors of similar type (constants
represent errors that are smooth within variables and rotations represent inter-variable
“smoothness”), so too must each candidate be used in αSA. Moreover, a full set
of types must be determined if the solver is to attain full efficiency (e.g., for 2D
linear elasticity, three rigid body modes are generally needed). We thus think of
each candidate as a sort of straw man that represents a class of smooth components.
Efficient computation of a full set of straw men is the responsibility of the adaptive
process. However, proper treatment of each straw man is the task of the basic solver,
which is SA in this case.

As we apply our current method to the homogenous problem, the resulting can-
didate, xl, becomes rich in the components of the error that are slow to converge in
the current method. Our goal in designing the adaptive algorithm is to ensure that
xl is approximated relatively well by the newly constructed transfer operator. That
is, we want to control the constant Ca in the inequality

min
v∈IRnl+1

‖xl − P l
l+1v‖2 ≤

Ca

ρ(Al)
‖xl‖2Al

.(3.1)

The transfer operators must therefore be constructed to give accurate approximations
to each candidate as it is computed. This can be guaranteed locally by requiring that,
over every aggregate A, we have

min
v∈IRnl+1

‖xl − P l
l+1v‖2A ≤ CaδA(xl),(3.2)

where δA are chosen so that summing (3.2) over all aggregates leads to (3.1), i.e., so
that

∑

A

δA(x) =
〈Alx,x〉
ρ(Al)

.(3.3)

For now, the only assumption we place on δA(x) is that (3.3) holds. An appropriate
choice for the definition of δA(x) is given in Section 4.

Note 3.2 (Relationship to theoretical assumptions). To relate condition (3.1)
to the theoretical foundation of smoothed aggregation, we make the following ob-
servation. If P l

l+1 is constructed so that (3.1) is satisfied for the candidate xl, the
construction of our method automatically guarantees that

min
v∈IRnl+1

‖x1 − P 1
2P

2
3 . . . P

l
l+1v‖2 ≤

Ca

ρ(Al)
‖x̂l‖2A1

,(3.4)

where x1 = P 1
2P

2
3 . . . P

l−1
l xl and x̂1 = I1

2I
2
3 . . . I

l−1
l xl. Since it is easy to show that

‖x̂‖A1
≤ ‖x‖A1

, we can thus guarantee that (2.8) holds for the particular fine-level
candidate x1. Further, as the set of candidates constructed during the setup cycle
is expected to eventually encompass the entire troublesome subspace, satisfaction
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of (3.1) for all candidates would imply the satisfaction of (2.8) for any u ∈ IRn1 . This,
in turn, guarantees convergence.

Note 3.3 (Locally small components). Each new candidate is the result of
applying the V -cycle based on the current B1, so it must be approximately A1-
orthogonal to all previously computed candidates. This is, however, only a global
property that the evolving candidates tend to exhibit. It may be that a candidate is
so small on some aggregate, relative to its energy, that its representation there can
be ignored. More precisely, we could encounter situations in which

‖xl‖2A ≤ CaδA(xl)(3.5)

for a particular aggregate, A, meaning that (3.2) is automatically satisfied, no matter
what choice we make for P l

l+1. We can, therefore, test for this condition for each
candidate on every aggregate. When the test is positive, we can simply remove the
candidate’s segment from consideration in construction of that aggregate’s transfer
operator. This elimination can help control coarse-level complexity since small can-
didate segments are prevented from generating additional columns of P l

l+1 and I ll+1.
(This test should be used in the initialization as well as the general setup stage. We
did not include it there for simplicity and because there is generally no worry about
complexity in the initial stage.)

Note 3.4 (Construction of P l
l+1 to minimize the number of columns). Although

each candidate’s segments may be too large to ignore, it may be that a nontrivial linear
combination of them is small. Thus, we also need to use (3.5) to identify a minimal
local basis for constructing the transfer operators so that the global approximation
property is maintained. To this end, let subscript A denote the restriction of the
corresponding vector or matrix to the degrees of freedom in A and let rA denote
the number of columns of Bl

A. One possibility for constructing the updated transfer
operator, P l

l+1, aggregate by aggregate, would then proceed as follows:

• Rescale each column, y, of Bl globally: y← y√
〈Aly,y〉

.

• Reorder the newly scaled columns of Bl
A so that their Euclidean norms over

aggregate A are nonincreasing: ‖y1‖A ≥ ‖y2‖A ≥ . . . ≥ ‖yrA‖A.
• Set j = 1.
• While j ≤ rA:

– Set γA =
CaδA(yj)
〈Alyj ,yj〉

.

– If ‖yj‖2A ≤ γA, then stop. Otherwise, add
yj

‖yj‖A
as a new column of

P l
l+1, make all remaining columns in Bl

A orthogonal to yj , and reorder
them so that their Euclidean norms over A are nonincreasing.

– j ← j + 1.
A disadvantage of this process is that P l

l+1 (hence, also I ll+1) must, in principle,
be constructed from scratch in each cycle of the adaptive setup. We discuss other
practical issues associated with this approach in Note 4.2.

Note 3.5 (Reusing previously constructed components). To exploit the work
done in the earlier steps of the setup as much as possible, we consider an alternate
procedure that reuses parts of P l

l+1 that have already been computed. Thus, in each

step of the setup, we only consider adding a single new column to P l
l+1. This has the

advantages that less work is required and that the storage used to hold the global
candidates can be reused as soon as they have been incorporated into P l

l+1.
In this approach, to minimize the complexity of the transfer operators, we seek to

ignore locally those components of candidate xl that appear to be well approximated
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by the current transfer operators. This includes the case when xl is locally small
in the sense of (3.5). To decide whether to ignore xl locally in the construction of
new tentative prolongator P l

l+1, we test how well it is approximated by the current

tentative prolongator, P̃ l
l+1. The following provides a test of how well the range of

P̃ l
l+1 approximates xl over aggregate A:

‖xl − P̃ l
l+1(P̃

l
l+1)

Txl‖2A ≤ CaδA(xl).(3.6)

(Since (P̃ l
l+1)

T P̃ l
l+1 = I, then P̃ l

l+1(P̃
l
l+1)

T is the L2 projection onto the range of P̃ l
l+1;

thus, (3.6) is just approximation property (3.2) using the tentative prolongator in place
of the smoothed one.) If (3.6) is satisfied, then xl is assumed to be well approximated
by the current transfer operator and is simply ignored in the construction of the new
transfer operator on aggregate A. (Practical implications of this local elimination
from the coarsening process are considered in Section 4.) If the inequality is not
satisfied, then we keep the computed vector y = xl − P̃ l

l+1(P̃
l
l+1)

Txl, which, by

construction, is orthogonal to all the vectors already represented in the current P̃ l
l+1.

We then normalize via y ← y/‖y‖A so that the new P l
l+1 has orthonormal columns:

(P l
l+1)

TP l
l+1 = I.

Before we introduce Algorithm 4 below, we stress that the description should
be viewed as a general outline of the adaptive multigrid setup. We intentionally
ignore several practical issues that must be addressed before this algorithm can be
implemented. For instance, we do not include details on how the new B l and I ll+1

are efficiently constructed in the evolving method. Also, when using a coarse-level
V -cycle constructed by previous applications of the setup stage, we must deal with
the possibility that the number of vectors approximated on coarse levels in previous
cycles is smaller than the number of vectors approximated on the fine levels in the
current cycle. These issues are discussed in Section 4, where we take advantage of the
smoothed aggregation framework to turn the prototypical Algorithm 4 into a practical
implementation.

Assume we are given a bound, K ∈ IN, on the number of degrees of freedom per
node on coarse levels, convergence factor tolerance ε ∈ (0, 1), and aggregate quantities

δA(x) such that
∑

A δA(x) =
〈Alx,x〉
ρ(Al)

.

Algorithm 4 (One cycle of the general setup stage).
1. If the maximum number of degrees of freedom per node on level 2 equals K, stop

(the allowed number of coarse-grid degrees of freedom has been reached).
2. Create a copy of the current B1 for later use: B̂1 ← B1.
3. Select a random x1 ∈ IRn1 , create a copy x̂1 ← x1, and apply µ iterations of the

current finest-level V -cycle:

x1 ← AMGµ
1 (x1,0).

4. If
(

〈A1x1,x1〉
〈A1x̂1,x̂1〉

)1/µ

≤ ε, then stop (A1x = b1 can be solved fast enough by the

current method).
5. Update B1 by incorporating the computed x1 in its range:

B1 ← [B1,x1].

6. For l = 1, . . . , L− 2:
(a) Create a copy of the current Bl+1 for later use: B̂l+1 ← Bl+1,
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(b) Define new coarse-level matrix Bl+1 and transfer operators P l
l+1, I

l
l+1

using (2.6) and (2.3). In creating P l
l+1, some local components in Bl

may be eliminated as suggested in Notes 3.4 and 3.5.
(c) Construct coarse operator Al+1 = (I ll+1)

TAlI
l
l+1.

(d) Set coarse-level approximation xl+1 to be the last column of Bl+1.
(e) Make a copy: x̂l+1 ← xl+1.
(f) Apply µ iterations of the current-level l + 1 V -cycle:

xl+1 ← AMGµ
l+1(xl+1,0).

(g) If
(

〈Al+1xl+1,xl+1〉
〈Al+1x̂l+1,x̂l+1〉

)1/µ

≤ ε, then skip Steps (d) through (h) in further

passes through Step 6.
(h) Update Bl+1 by ensuring that the newly computed xl+1 is in its range:

Bl+1 ← [B̂l+1,xl+1].

7. Update the finest-level candidate:

x1 ← I1
2I

2
3 . . . I

L−2
L−1xL−1.(3.7)

8. Update B1 by adding the newly computed x1 to the range of B̂1:

B1 ← [B̂1,x1].

9. Create a V -cycle, AMG, based on B1 using the standard smoothed aggregation
setup of Algorithm 2.

Algorithm 4, which is illustrated in Figure 3.3, starts from a V -cycle on input
and produces an improved V -cycle as output. It stops iterating when either the
convergence factor for the fine-level iteration in Step 3 is acceptable (as measured in
Step 4) or when the maximum number of iterations is reached. Note that, as with
the initial stage, this general stage does not involve level L processing because the
coarsest level is assumed to be treated by a direct solver. Also as in the initial stage,
once a level is reached where the problem can be solved well by the current method,
any further coarsening is constructed as in the standard SA.

4. Implementation Issues. Several issues must be addressed to make Algo-
rithm 4 practical. We take advantage of certain features of the smoothed aggregation
concept to carry out the method outlined in Algorithm 4, as well as to control the
amount of work required to keep the evolving coarse-level hierarchy up to date.

As suggested in Notes 3.4 and 3.5, a candidate may occasionally be eliminated
locally over an aggregate. This results in varying numbers of degrees of freedom
per node on the coarse levels. (Recall that a coarse-level node is defined as a set of
degrees of freedom, each representing the restriction of a single candidate to a fine-
level aggregate.) To simplify notation, we assume for the time being that the number
of degrees of freedom per node is the same for all nodes on a given level (i.e., no
candidates are locally eliminated). It is important, however, to keep in mind that we
are interested in the more general case. A generalization to varying numbers of degrees
of freedom per node could be obtained easily at the cost of a much more cumbersome
notation. We briefly remark on the more general cases in Notes 4.2 and 4.3 below.

Note 4.1 (Construction of temporary “bridging” transfer operators). An
issue we must consider is the interfacing between the emerging V -cycle on finer levels
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Fig. 3.3. One step of general setup stage, Algorithm 4.
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and the previous V -cycle on coarser levels. Each setup cycle starts by selecting an
initial approximation for a new candidate on the finest level (cf. Figure 3.3). This
approximation is then improved by applying the error propagation matrix for the
previously constructed V -cycle to it. The resulting candidate is used to enrich B1.
This necessitates an update of P 1

2 , I
1
2 , and A2 from (2.6) and (2.2), and introduces

an additional degree of freedom for the nodes on level 2. Since we now want to run
the current solver on level 2 to obtain an improved candidate on that level, we need
to temporarily modify P 2

3 and I2
3 because these transfer operators have not yet been

updated to reflect the added degrees of freedom on level 2. Once this modification
has been made, a V -cycle on level 2 can be run to compute the new candidate there.
This candidate is then incorporated into B2 and new P 2

3 and I2
3 are constructed,

overwriting the temporary versions, and the new A3 can be computed using (2.2). To
perform the V -cycle on level 3, we then must temporarily modify operators P 3

4 and
I3
4 for the same reason we had to update P 2

3 and I2
3 above. Analogous temporary

modifications to the transfer operators are necessary on all coarser levels, as the setup
cycle traverses sequentially through them.

Thus, on stage l of a single cycle of the setup process, all transfer operators defin-
ing the V -cycle can be used without change, except for P l

l+1 and, consequently, I ll+1

defined through (2.3). We can construct the temporary operator, P l
l+1, by modifying

(2.6) as

P l
l+1B

l+1 = B̂l,

where B̂l is formed by removing the last column from Bl, which consists of the
k + 1 fine-level candidate vectors, including the newly added one (so that the first k
candidates are the same as in the previous cycle). Since tentative prolongator P l

l+1

produced in this way is based only on fitting the first k vectors in B l, the coarse-level
matrix Al+1 resulting from the previous cycle of the αSA setup (described below) can
be used on the next level. Thus, all the coarse operators for levels coarser than l can
be used without change. This has the advantage of reducing the amount of work to
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keep the V -cycle up to date on coarser, yet-to-be-traversed levels.

So far, we have only considered the case where all candidates are used locally.
In the interest of keeping only the candidates that are essential to achieving good
convergence properties, we now consider locally eliminating the candidates where
appropriate.

Note 4.2 (Eliminating candidates locally as suggested in Note 3.5). When
we eliminate a candidate locally over an aggregate as suggested in Note 3.5, the con-
struction of the bridging operator above can be easily modified so that the multigrid
hierarchy constructed in the previous setup cycle can be used to apply a level l V -
cycle in the current one. Since the procedure guarantees that the previously selected
candidates are retained and only the newly computed candidate may be locally elim-
inated, the V -cycle constructed in the previous setup cycle remains valid on coarser
grids as in the case of Note 4.1. The only difference now is that aggregates may have
a variable number of associated candidates, and the construction of the temporary
transfer operator P l

l+1 described in Note 4.1 must account for this when removing the

column of Bl to construct B̂l.

Note 4.3 (Eliminating candidates locally as suggested in Note 3.4). The
situation is slightly more complicated when the procedure described in Note 3.4 is
used to eliminate candidates locally over an aggregate. First, even if none of the
old candidates are eliminated, the use of the procedure of Note 3.4 may result in a
permutation of the candidates over an aggregate, hence a permutation of the coarse
degrees of freedom corresponding to the associated node. To match the fine-level
V -cycle with the existing coarser levels, an appropriate permutation of the coarse
degrees of freedom must then be done when performing the intergrid transfer in the
application of the resulting V -cycle.

However, if some of the previously selected candidates are eliminated in favor of
the new candidate in the construction of the updated P l

l+1, the coarse V -cycle should
no longer be used without change. In such cases, we would have to generate all the
coarse levels below level l before running the level l + 1 V -cycle. This results in a
significantly increased cost of the setup phase.

Note 4.4 (Selection of the local quantities δA(x)). Our algorithm relies on local
aggregate quantities δA(x) to decide whether to eliminate candidate x in aggregate
A, and to guarantee that the computed candidates satisfy the global approximation
property (3.1). This leads us to the choice

δA(x) =

(

card(A)
Nl

) 〈Alx,x〉
ρ(Al)

,(4.1)

where card(A) denotes the number of nodes in aggregate A on level l, and Nl is the

total number of nodes on that level. Note that
∑

A δA(x) =
〈Alx,x〉
ρ(Al)

for any x, so this

can be used in local estimates (3.2) to guarantee (3.1).

Suppose that we are given a bound, K > 0, on the maximum allowed number of
degrees of freedom per node on the coarse levels, and a tolerance, ε ∈ (0, 1), on the
target convergence factor. Then one adaptive setup cycle is defined as follows.

Algorithm 5 (One cycle of αSA).

1. If the maximum number of degrees of freedom per node on level 2 equals K, stop
(the allowed number of coarse grid degrees of freedom has been reached).

2. Create a copy of the current B1 for later use: B̂1 ← B1.
3. Select a random x1 ∈ IRn1 , create a copy x̂1 ← x1, and apply µ iterations of the
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current V -cycle:

x1 ← AMGµ
1 (x1,0).

4. If
(

〈A1x1,x1〉
〈A1x̂1,x̂1〉

)1/µ

≤ ε, then stop (A1x = b1 can be solved fast enough by the

current method).
5. Update B1 by extending its range with the new column {x1}:

B1 ← [B1,x1].

6. For l = 1, . . . , L− 2:
(a) Define a new coarse-level matrix Bl+1 and transfer operator P l

l+1 based

on (2.6), using Bl and decomposition {Al
i}Nl

i=1. In creating P
l
l+1, some lo-

cal components in Bl may be locally eliminated as suggested in Note 3.5.
(b) Construct the prolongator: I ll+1 = SlP

l
l+1.

(c) Construct the coarse operator: Al+1 = (I ll+1)
TAlI

l
l+1.

(d) Reorder the columns of Bl+1 so that its last is xl+1 and let B̂l+1 consist
of all other columns of Bl+1.

(e) Create a “bridge” transfer operator P l+1
l+2 to the coarser level with the old

Bl+1 by fitting all the vectors in Bl+1 except the last one; see Note 4.1.
(f) Set the new “bridging” prolongator: I l+1

l+2 = Sl+1P
l+1
l+2 .

(g) Make a copy: x̂l+1 ← xl+1.
(h) Apply µ iterations: xl+1 ← AMGµ

l+1(xl+1,0).

(i) If
(

〈Al+1xl+1,xl+1〉
〈Al+1x̂l+1,x̂l+1〉

)1/µ

≤ ε, then skip (d) through (j) in further passes

through Step 6.
(j) Update the coarse representation of candidate Bl+1:

Bl+1 ← [B̂l+1,xl+1].

7. Update the latest fine-level candidate:

x1 ← I1
2I

2
3 . . . I

L−2
L−1xL−1.(4.2)

8. Update B1 by extending the old copy with the newly computed x1:

B1 ← [B̂1,x1].

9. Create the V -cycle based on the current B1 using the standard smoothed aggregation
setup described by Algorithm 2.

Note that if we used the candidate elimination scheme of Note 3.4 in 6(a), we
should modify the algorithm to construct a completely new multigrid hierarchy on
levels l+1 through L before applying the level l+1 V -cycle in Step 6(h) (cf. Note 4.2).

Before presenting computational results, we consider several possible improve-
ments intended to reduce the necessary number of cycles of the setup and the amount
of work required to carry each cycle.

Note 4.5 (Improving the quality of existing candidates). Many practical sit-
uations, including fourth-order equations and systems of fluid and solid mechanics,
require a set of multiple candidates to achieve optimal convergence. In the interest
of keeping operator complexity as small as possible, it is imperative that the number
of candidates used to produce the final method be controlled. Therefore, ways of
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improving the quality of each candidate are of interest, to curb the demand for the
growth in their number.

When the current V -cycle hierarchy is based on approximating at least two can-
didates (in other words, the coarse problems feature at least two degrees of freedom
per node), this can be easily accomplished as follows.

Assume that the currently available candidate vectors are x1, . . . ,xk. Consider
one such candidate, say, xj, that we want to improve. We want to run a modified
but current V -cycle on the homogenous problem, A1x = 0, using xj as the initial
guess. The modification consists of disabling, in the coarse-grid correction process,
the columns of the prolongator corresponding to the given candidate. That is, instead
of xl ← xl + I ll+1xl+1 in step 2(c) of Algorithm 1, we use

xl ← xl + I ll+1x̂l+1,

where x̂l+1 is obtained from xl+1 by setting to zero every entry corresponding to
fine-level candidate xj. Thus, the columns of I ll+1 corresponding to xj are not used
in coarse-grid correction.

In this way, we come up with an improved candidate vector without restarting
the entire setup iteration from scratch and without adding a new candidate. Since we
focus on one component at a time and keep all other components intact, this modified
V -cycle is expected to converge rapidly.

Note 4.6 (Saving work). The reuse of current coarse-level components de-
scribed in Note 4.1 reduces the amount of work required to keep the V -cycle up to
date. Additional work can be saved by performing the decomposition of nodes into
disjoint aggregates only during the setup of the initial V -cycle and then reusing this
decomposition in later cycles. Yet further savings are possible in coarsening, assum-
ing the candidates are allowed to be locally eliminated according to Note 3.5. For
instance, we can exploit the second-level matrix structure:

A2 =

[

Ã2 X
Y Z

]

,

where Ã2 is the second-level matrix from the previous cycle. Thus, A2 need not be
recomputed and can be obtained by a rank-one update of each block entry in Ã2.
In a similar fashion, the new operators P l

l+1, B
l+1 do not have to be recomputed in

each new setup cycle by the local QR decomposition noted in Section 2. Instead, it is
possible to update each nodal entry in P̃ l

l+1, B̂
l+1 by a rank-one update on all coarse

levels, where P̃ l
l+1, B̂

l+1 are the operators created by the previous setup cycle.

5. Numerical Experiments. To demonstrate the effectiveness of the proposed
adaptive setup process, we present results obtained by applying the method to several
model problems. In these tests, the was solver stopped when the relative residual
reached the value ε = 10−12 (unless otherwise specified). The value Ca = 10−3 was
used for test (3.6) and the relaxation scheme for the multigrid solver was symmetric
Gauss-Seidel. While a Krylov subspace process is used often in practice, we present
these results for a basic multigrid V -cycle with no acceleration scheme for clarity.

For each experiment, we report the following. The column denoted by “Iter.”
contains the number of iterations required to reduce the residual by the prescribed
factor. The “Factor” column reports convergence factor measured as the geometric
average of the residual reduction in the last 10 iterations. In the “Total CPU” column,
we report the total CPU times required to complete both the setup and iteration
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phases of the solver. These are relative times, with one unit defined as the time
required to solve the problem given the correct near-nullspace components. In the
“Complexity” column, we report the operator complexity associated with the V -
cycle for every run. The “Candidates” column indicates the number of kernel vectors
computed in the setup iteration (a value of “provided” means that complete kernel
information was supplied to the solver, assuming standard discretization and ignoring
scaling). Parameter µmax denotes the maximal number of tentative V -cycles allowed
in computing each candidate.

In all the cases considered, the problem was modified either by scaling or by
rotating each nodal entry in the system by a random angle (as described below).
These modifications pose serious difficulties for classical algebraic iterative solvers
that are not aware of such modifications, as we assume here.

For comparison, we also include the results for the unmodified problem, with a
supplied set of kernel components. Not surprisingly, the standard algorithm (without
benefit of the adaptive process) performs poorly for the modified system when the
details of this modification are kept from the solver, as we assume here.

We start by considering a diagonally scaled problem:

A← D−1/2AD−1/2,

where the original A is the matrix obtained by standard Q1 finite element discretiza-
tion of the 3D Poisson operator on a cube and D is a diagonal matrix with entries
10β , where β ∈ [−σ,+σ] is chosen randomly. Table 5.1 shows the results for different
values of parameter σ and different levels of refinement. Using the supplied kernel
yields good convergence factors for the unmodified problem, but the performance is
poor and deteriorates with increased problem size when used with σ 6= 0. In contrast,
the adaptive process, starting from a random approximation, recovers the convergence
properties associated with the standard Poisson problem (σ = 0), even for the scaled
case, with convergence that appears independent of the problem size.

σ Candidates µmax Iter. Factor Total CPU Complexity

Poisson problem with 68,921 degrees of freedom
0 provided N/A 9 0.100 1.00 1.038
0 1 5 9 0.100 1.12 1.038
6 provided N/A 150 0.871 11.99 1.038
6 1 5 10 0.126 1.17 1.038

Poisson problem with 1,030,301 degrees of freedom
0 provided N/A 9 0.093 1.00 1.039
0 1 5 9 0.099 1.37 1.039
6 provided N/A 690 0.970 55.67 1.039
6 1 5 9 0.096 1.51 1.039

Table 5.1
Misscaled 3D Poisson problems, 68,921 and 1,030,301 degrees of freedom; using ε = 10−8.

The second problem comes from a diagonally scaled matrix arising in 2D elasticity.
Diagonal entries of D are again defined as 10β , with β ∈ [−σ,+σ] chosen randomly.
The original matrix is the discrete operator for the plane-strain elasticity formulation
over a square domain using bilinear finite elements on a uniform grid, with a Poisson
ratio of ν = 0.3 and Dirichlet boundary conditions specified only along the “West”
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side of the domain. The results in Table 5.2 follow a pattern similar to those for the
Poisson problem. Note, however, that more than the usual three candidate vectors
are now needed to achieve convergence properties similar to those of the unscaled
problem when a correct set of three rigid-body modes is provided by the user. For
the scaled problem, however, supplying the rigid-body modes computed based on the
problem geometry leads, as expected, to dismal performance of the standard solver.

The third set of experiments is based again on the 2D elasticity problem, but now
each nodal block is rotated by a random angle β ∈ [0, π]:

A← QTAQ,

where Q is a nodal block-diagonal matrix consisting of rotations with random angles.
The results in Table 5.3 show that αSA can recover good convergence factors for both
the unmodified and the modified systems. Without the adaptive procedure, our basic
algebraic solver could not solve the modified matrix problem in a reasonable amount
of time.

The final example demonstrates performance of the method when a higher number
of candidates is required. We consider a 3D elasticity problem with local rotations.
This is done to maintain locally orthogonal coordinates, but is otherwise a random
rotation of the three degrees of freedom at each node. The model problem we start
from is linearized elasticity discretized using trilinear finite elements over a uniform
grid. Dirichlet boundary conditions are specified on the “West” face of the cube and
the Poisson ratio is set to ν = 0.3. The results in Table 5.4 show that, even for the
modified system, the adaptive method can again recover good convergence factors.
Furthermore, our current method mimics the convergence of the smoothed aggregation
for the unmodified problem with the supplied set of rigid-body modes. In this last set
of experiments, we can get close to the ideal iteration counts using just 6 candidates.
We see that using one extra candidate can improve convergence properties and in
some cases actually lower the overall cost of the total time to solution. This is done
at the price of a small increase in operator complexity. For problems with multiple
right-hand sides, the more expensive setup would be performed only once, and using
the extra candidate may then be preferred.

Note 5.1. The operator complexities in all of the test problems remain be-
low 2. Moreover, for the larger spatial dimension of 3D, these complexities improve
somewhat, due largely to the increased speed of aggregation coarsening. It is also
worth mentioning that the increasing size of the coarse matrix block entries due to
the increasing number of candidates does not significantly impact the time needed
to perform one iteration of the solver, apparently due to the more efficient memory
access afforded by blocking.

6. Conclusions. We consider a new multilevel method to tackle problems which,
to date, have been very difficult to handle by algebraic multigrid methods. At the
expense of a somewhat more costly setup stage and more intricate implementation,
we design a method that has, thus far, proved successful at solving such problems.
We observe that the convergence properties of the method seem very insensitive to
modifications of the algebraic system by scaling or nodal rotation. Moreover, the
solver is flexible and can benefit from extra information supplied about the problem.
If such information is lacking or incorrect, then αSA can act as a full black-box
solver. Despite the growing number of degrees of freedom per coarse-level node as the
method evolves, the overall cost of one step of the final iteration grows only modestly
because of better utilization of cache memory due to dense matrix operations on the
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σ Candidates µmax Iter. Factor Total CPU Complexity

2D elasticity problem, 80, 400 degrees of freedom
0 3 provided N/A 17 0.21 1.00 1.27
0 3 6 23 0.37 2.31 1.27
0 3 15 18 0.23 2.91 1.27
6 3 provided N/A 299 0.92 14.58 1.27
6 3 6 25 0.38 2.43 1.27
6 3 15 18 0.25 2.98 1.27

2D elasticity problem, 181, 202 degrees of freedom
0 3 provided N/A 23 0.35 1.00 1.28
0 3 15 267 0.937 11.91 1.27
0 4 15 26 0.422 3.29 1.50
0 4 20 26 0.439 3.79 1.50
0 5 15 20 0.314 3.86 1.78
6 3 provided N/A 5, 000∗ 0.996∗ 199.56∗ 1.28
6 4 15 23 0.367 3.28 1.50
6 4 20 19 0.302 3.36 1.50
6 5 10 14 0.173 3.04 1.78

Table 5.2
Scaled 2D elasticity problems with 80, 400 and 181, 202 degrees of freedom. Iteration counts

marked with an asterisk indicate that residual reduction by 1012 was not achieved before the maxi-
mum number of iterations was reached.

nodal blocks. Operator complexity remains at reasonable levels and actually seems
to improve with increasing spatial dimension.

Future development will concentrate on extending features of the underlying
method on which αSA relies and on developing theory beyond the heuristics we de-
veloped here. Although most decisions are currently made by the code at runtime,
much remains to be done to fully automate the procedure, such as determining cer-
tain tolerances that are now input by the user. We plan to explore the possibility of
setting or updating these parameters at runtime based on the characteristics of the
problem at hand. A related work in progress [6] explores adaptive ideas suitable in
the context of the standard AMG method.

REFERENCES

[1] J. Bramble, J. Pasciak, J. Wang, and J. Xu, Convergence estimates for multigrid algorithms
without regularity assumptions, Math. Comp., 57 (1991).

[2] A. Brandt, a lecture given at CASC, Lawrence Livermore National Lab, June, 2001.
[3] A. Brandt, S. F. McCormick, and J. W. Ruge, Algebraic multigrid (AMG) for sparse matrix

equations, in Sparsity and Its Applications, D. J. Evans, ed., Cambridge University Press,
Cambridge, 1984.

[4] A. Brandt and D. Ron, Multigrid solvers and multilevel optimization strategies, manuscript,
2002.

[5] M. Brezina, A. J. Cleary, R. D. Falgout, V. E. Henson, J. E. Jones, T. A. Manteuffel,
S. F. McCormick, , and J. W. Ruge, Algebraic multigrid based on element interpolation
(AMGe), SIAM J. Sci. Comp., 22 (2000), pp. 1570–1592.

[6] M. Brezina, R. Falgout, S. MacLachlan, T. Manteuffel, S. McCormick, and J. Ruge,
Adaptive algebraic multigrid (αAMG), in preparation, 2002.

[7] M. Brezina, C. I. Heberton, J. Mandel, and P. Vaněk, An iterative method with
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[19] P. Vaněk, M. Brezina, and J. Mandel, Convergence of algebraic multigrid based on smoothed
aggregation, Numerische Mathematik, 88 (2001), pp. 559–579.

[20] P. Vaněk, Acceleration of convergence of a two-level algorithm by smoothing transfer operator,
Applications of Mathematics, 37 (1992), pp. 265–274.
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